Protein and cell patterning in closed polymer channels by photoimmobilizing proteins on photografted poly(ethylene glycol) diacrylate.

نویسندگان

  • Esben Kjær Unmack Larsen
  • Morten Bo Lindholm Mikkelsen
  • Niels B Larsen
چکیده

Definable surface chemistry is essential for many applications of microfluidic polymer systems. However, small cross-section channels with a high surface to volume ratio enhance passive adsorption of molecules that depletes active molecules in solution and contaminates the channel surface. Here, we present a one-step photochemical process to coat the inner surfaces of closed microfluidic channels with a nanometer thick layer of poly(ethylene glycol) (PEG), well known to strongly reduce non-specific adsorption, using only commercially available reagents in an aqueous environment. The coating consists of PEG diacrylate (PEGDA) covalently grafted to polymer surfaces via UV light activation of the water soluble photoinitiator benzoyl benzylamine, a benzophenone derivative. The PEGDA coating was shown to efficiently limit the adsorption of antibodies and other proteins to <5% of the adsorbed amount on uncoated polymer surfaces. The coating could also efficiently suppress the adhesion of mammalian cells as demonstrated using the HT-29 cancer cell line. In a subsequent equivalent process step, protein in aqueous solution could be anchored onto the PEGDA coating in spatially defined patterns with a resolution of <15 μm using an inverted microscope as a projection lithography system. Surface patterns of the cell binding protein fibronectin were photochemically defined inside a closed microfluidic device that was initially homogeneously coated by PEGDA. The resulting fibronectin patterns were shown to greatly improve cell adhesion compared to unexposed areas. This method opens for easy surface modification of closed microfluidic systems through combining a low protein binding PEG-based coating with spatially defined protein patterns of interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein-resistant polymer coatings based on surface-adsorbed poly(aminoethyl methacrylate)/poly(ethylene glycol) copolymers.

We report on the protein-resistant properties of glass substrates coated with novel copolymers of 2-aminoethyl methacrylate hydrochloride and poly(ethylene glycol) methyl ether methacrylate (AEM-PEG). In comparison to currently available protein-blocking polymer systems, such as poly-l-lysine-poly(ethylene glycol), silane-based poly(ethylene glycol), and poly(ethylene glycol) brushes prepared b...

متن کامل

A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning.

We present a simple, direct soft lithographic method to fabricate poly(ethylene glycol) (PEG) microstructures for protein and cell patterning. This lithographic method involves a molding process in which a uniform PEG film is molded with a patterned polydimethylsiloxane stamp by means of capillary force. The patterned surfaces created by this method provide excellent resistance towards non-spec...

متن کامل

Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis.

Angiogenesis, which is morphogenesis undertaken by endothelial cells (ECs) during new blood vessel formation, has been traditionally studied on natural extracellular matrix proteins. In this work, we aimed to regulate and guide angiogenesis on synthetic, bioactive poly(ethylene glycol)-diacrylate (PEGDA) hydrogels. PEGDA hydrogel is intrinsically cell nonadhesive and highly resistant to protein...

متن کامل

Cell interaction with protein-loaded interpenetrating networks containing modified gelatin and poly(ethylene glycol) diacrylate.

The effects of modification to an interpenetrating network (IPN) system composed of gelatin and poly(ethylene glycol) diacrylate were characterized by protein release kinetics, fibroblast adhesion, and in vivo host response. The maximum cumulative percent of parvalbumin released from various IPN formulations ranged from 17.6+/-3.2% to 56.9+/-35.4% over 2-96h. Despite modifying gelatin with ethy...

متن کامل

Development of macroporous poly(ethylene glycol) hydrogel arrays within microfluidic channels.

The mass transport of solutes through hydrogels is an important design consideration in materials used for tissue engineering, drug delivery, and protein arrays used to quantify protein concentration and activity. We investigated the use of poly(ethylene glycol) (PEG) as a porogen to enhance diffusion of macromolecules into the interior of polyacrylamide and PEG hydrogel posts photopatterned wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomicrofluidics

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2014